In exploring the role of lipids in a biological process, it is often useful to know which lipids are present, and in what proportions. Because lipids are insoluble in water, their extraction from tissues and subsequent fractionation require the use of organic solvents and some techniques not commonly used in the purification of water-soluble molecules such as proteins and carbohydrates. In general, complex mixtures of lipids are separated by differences in their polarity or solubility in nonpolar solvents. Lipids that contain ester- or amide-linked fatty acids can be hydrolyzed (saponified) by treatment with acid or alkali, to yield their component parts for analysis.
Thin-layer chromatography on silicic acid (Fig. 9-21) employs the same principle. A thin layer of silica gel (silicic acid) is spread onto a glass plate, to which it adheres. A small sample of lipids dissolved in chloroform is applied near one edge of the plate, which is dipped in a shallow container of an organic solvent within a closed chamber saturated with the solvent vapor. As the solvent rises on the plate by capillary action, it carries lipids with it. The less polar lipids move farthest, as they have less tendency to bind to the polar silicic acid. The lipids can be detected after their separation by spraying the plate with a dye (rhodamine), which fluoresces when associated with lipids, or by exposing the plate to iodine fumes. Iodine reacts with the double bonds in fatty acids, giving the lipids that contain them a yellow or brown color. For subsequent analysis, regions containing separated lipids can be scraped from the plate and the lipids recovered by extraction with an organic solvent.
Lipid Extraction Requires Organic Solvents
Neutral lipids (triacylglycerols, waxes, pigments, etc. ) are readily extracted from tissues with ethyl ether, chloroform, or benzene, solvents in which lipid clustering driven by hydrophobic interactions does not occur. Membrane lipids are more effectively extracted by more polar organic solvents, such as ethanol or methanol, which reduce the hydrophobic interactions among lipid molecules but also weaken the hydrogen bonds and electrostatic interactions that bind membrane lipids to membrane proteins. A commonly used extractant is a mixture of chloroform, methanol, and water, initially in proportions that are miscible, producing a single phase (1:2:0.8, v/v/v). After homogenizing tissue in this solvent to extract all lipids, more water is added to the resulting extract, and it separates into two phases, methanol/water (top phase) and chloroform (bottom phase). The lipids remain in the chloroform, and more polar molecules (proteins, sugars) partition into the polar phase of methanol/water (Fig. 9-21)Adsorption Chromatography Separates Lipids of Different Polarity
The complex mixture of tissue lipids can be fractionated further by chromatographic procedures based on the different polarities of each class of lipid. In adsorption chromatography (Fig. 9-21), an insoluble, polar material such as silica gel (a form of silicic acid, Si(OH)4), is packed into a long, thin glass column, and the lipid mixture (in chloroform solution) is applied to the top of the column. The polar lipids bind tightly to the polar silicic acid, but the neutral lipids pass directly through the column and emerge in the first chloroform wash. The polar lipids are then eluted, in order of increasing polarity, by washing the column with solvents of progressively higher polarity. Uncharged but polar lipids (cerebrosides, for example) are eluted with acetone, and very polar or charged lipids (such as glycerophospholipids) are eluted with methanol.Thin-layer chromatography on silicic acid (Fig. 9-21) employs the same principle. A thin layer of silica gel (silicic acid) is spread onto a glass plate, to which it adheres. A small sample of lipids dissolved in chloroform is applied near one edge of the plate, which is dipped in a shallow container of an organic solvent within a closed chamber saturated with the solvent vapor. As the solvent rises on the plate by capillary action, it carries lipids with it. The less polar lipids move farthest, as they have less tendency to bind to the polar silicic acid. The lipids can be detected after their separation by spraying the plate with a dye (rhodamine), which fluoresces when associated with lipids, or by exposing the plate to iodine fumes. Iodine reacts with the double bonds in fatty acids, giving the lipids that contain them a yellow or brown color. For subsequent analysis, regions containing separated lipids can be scraped from the plate and the lipids recovered by extraction with an organic solvent.